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In many problems of interest, solid objects are treated as rigid bodies in com-
pressible flowfields. When these solid objects interact with certain features of the
compressible flowfield, inaccurate solutions may develop. In particular, the well-
known “overheating effect” occurs when a shock reflects off of a stationary solid
wall boundary causing overshoots in temperature and density, while pressure and
velocity remain constant (see, e.g., [3, 7, 13, 14]). This “overheating effect” is more
dramatic when compressible flows are coupled to moving solid objects (e.g., moving
pistons), where the nonphysical density and temperature overshoots can be cumula-
tive and lead to negative values. We consider the general class of material interface
problems where numerical methods can predict pressure and velocity adequately, but
fail miserably in their prediction of density and temperature. Motivated by both total
variation considerations and physical considerations, we have developed a simple but
general boundary condition for this class of problems. This new boundary condition
does not change the pressure or the velocity predicted by the numerical method, but
does change the density and the temperature in a fashion consistent with the equation
of state resulting in new values that minimize a specific measure of variation at the
boundary. © 1999 Academic Press

1. INTRODUCTION

The well-known “overheating effect” occurs when a shock reflects off of a station
solid wall boundary causing overshoots in temperature and density, while pressure
velocity remain constant. Note that the solid wall boundary condition is usually applie
a reflection condition so that a shock impinging on a wall is met by a reflected shoc
equal strength traveling in the opposite direction causing the appropriate reflection. |
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leads one to the obvious conclusion that “overheating” may occur within a fluid when t
equal strength shocks collide.) In [7], Glaister illustrates “overheating effects” at solid w
boundaries for many different equations of state, including the standard gamma law ge

In [13], Menikoff argues that this error is caused by the smeared out numerical she
profile and that the spatial width of this error shrinks to zero as the effective scheme visco
shrinks to zero. However, he also shows that the maximum overshoot at the wall does
shrink as the numerical dissipation goes to zero; i.e., the solution converged ihdbese,
but not in theL*° sense as the scheme viscosity approaches zero. In addition, he points
that the pressure and velocity profiles at the wall equilibrate quickly, while the temperat
and density (or equivalently entropy) errors persist. Menikoff believes that this error i
symptom of the numerical scheme’s unsuccessful attempt to model a physical phenom
which occurs in real shock tubes.

In [14], Noh had pointed out many of the effects that Menikoff later discussed in [1-
Noh also stated that heat conduction at the wall would dissipate this entropy error and
the failure of numerical schemes is due in part to the absence of heat conduction at the \
In fact, he shows that a scheme with built-in heat conduction could help to alleviate
problem, allowing convergence in the° sense as well.

In [3], Marquina proposed a flux splitting method which seems to possess a builtin h
conduction mechanism. When this flux splitting is used with a low viscosity scheme (e
ENO [16] or WENO [10]), the error due to scheme viscosity is minimized and the bu
in heat conduction mechanism helps to dissipate the remaining entropy errors, allow
convergence in both thie? andL> sense. In general this works well, but there are time
when the heat conduction mechanism invoked by Marquina’s flux splitting works on a mt
slower time scale than the accumulation of the entropy error leading to a lack of converge
of the solution and the possibility of polluting other flow features in the computation
domain.

Suppose we solve the Euler equations on a fixed grid with a moving solid object. The s
object will sweep through the compressible flow, causing the appearance and disappeal
of grid points in the Eulerian flow. For example, consider a piston moving from left to rig|
in a one-dimensional Eulerian code where the piston continues to cross over grid pc
removing them from the computational flowfield. In these types of problems, the entrc
errors occurring at the interface will be cumulative and may accumulate faster than
built-in heat conduction mechanism can dissipate them. In fact, this can lead to dram
overshoots in the solution, resulting in negative values in density or temperature. In th
instances one needs to fix the entropy error faster than it accumulates. One natural w:
doing this is by the application of a boundary condition.

Consider the Euler equations at a given point. If we fix pressure and velocity, then th
is one degree of freedom in choosing the solution, e.g. we may choose density, ther
equation of state determines the temperature (and thus the internal energy). “Overhea
occurs, when the numerical method chooses a value from this one parameter family whi
widely different from the accepted physical value. In these instances, pressure and velc
seem to match the accepted solution, but the scheme does not predict an acceptable val
the third variable (density or temperature). In the common instance that this “overheati
occurs at a material boundary, it usually starts locally, motivating the implementation ¢
fix in the form of a boundary condition.

We begin by assuming that the numerical scheme has chosen an adequate pressu
consider the problem from a physical standpoint. On a graph of temperature versus der
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this pressure dictates the isobar (constant pressure line) that the solution to the proble
on. For the case of an ideal gas, with equation of gtatep RT, the isobars are a family of
hyperbolae of the fornT = A,/ p, whereA, = po/ R is a different constant on each isobal
(i.e., the hyperbolae are parameterized by pressure and a specific isobar can be I
p= po). The pressure predicted by the numerical schemes dictates the choice of hype
associated with the solution. “Overheating” occurs when the numerical scheme choo
density which is too small corresponding to a temperature which is too large. Simile
“underheating” occurs when the numerical scheme chooses a density which is too |
corresponding to a temperature which is too small. Since every point on this isobar
the same pressure, we are free to choose any point we wish, without changing the pre
predicted by the numerical scheme. Our boundary condition consists of choosing a |
on this isobar which is a better candidate for the solution than the obviously wrong ch
given by the numerical scheme. That is, the numerical method picks out a reasonable i
(i.e., pressure), but chooses the wrong point on that isobar. Our boundary condition cor
of choosing a better point.

In the extreme limits of the hyperbola, we may choose density as large as we wish (s
temperature) or as small as we wish (large temperature). Since both of these choices |
extreme “overheating” and our goal is to reduce “overheating,” we want to avoid the e
of the hyperbola and stay near the center. However, there is no clear choice for the |
without some measure of an acceptable solution. Since we believe that “overheating”
locally, near a material interface, we apply our “overheating fix” as a boundary condit
and assume that the nearby points are better behaved (no “overheating” or less dra
“overheating”) using them as a reference from which to choose our boundary condition
will choose our boundary condition on our fixed isobar (given by the numerical scheme
minimize the difference in behavior between it and one or more of its neighbors.

2. EULER EQUATIONS

Consider the 1D Euler equations

o pu
oul|l +| pu>+p | =0, (1)
E/, (E+ pu

wheret is time, X is spacep is the densityu is the velocity,E is the total energy per unit
volume, andp is the pressure. The total energy is the sum of the internal energy and
kinetic energy,

pu?

E=pe+—, 2
pe+ = 2

wheree is the internal energy per unit mass.

In general, the pressure can be written as a function of density and internal ene
p= p(p, ), or as a function of density and temperatyse; p(p, T). In order to complete
the model, we need an expression for the internal energy per unit masseSirege, T)
we write

ae ae
e (), (i), o7 v
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which can be shown to be equivalent to

2

de= <p__TpT>dp—+CvdT, 4)
0

wherec, is the specific heat at constant volume [1].

The sound speeds associated with the equations depend on the partial derivatives c
pressure, eithep, and pe or p, and pr, where the change of variables from density anc
internal energy to density and temperature is governed by the following relations

-T
Po = Pp — (pC,Osz) pr (5)

e — (g) or 6)

and the sound speeds given by

C=/Pp, + PPe/p? (7)

for the case where = p(p, ) and

c= /P + T(pr)?/c,p? ®)

for the case wherp = p(p, T).

3. IDEAL GAS

We will motivate our new boundary condition by first considering an ideal gas. For an ide
gasp=pRT whereR=R,/M is the specific gas constant, wil, ~ 8.31451J/mol K
the universal gas constant aMithe molecular weight of the gas. Also valid for an ideal
gas isc, — ¢, = R, wherec,, is the specific heat at constant pressure. Additionally, gamrr
as the ratio of specific heags=cy/c, [6].

For an ideal gas, Eq. (4) becomes

de=c,dT 9)

and, assuming that does not depend on temperature (calorically perfect gas), we integr:
to obtain

e=c,T, (20)

where we have setto be zero at 0 K. Note thatis not uniquely determined, and we could
choose any value farat 0 K (although one needs to use caution when dealing with mo
than one material to be sure that integration constants are consistent with the heat re
in any chemical reactions that occur).

Suppose that we have acceptable reference values for all conserved variables from w
we can assemblp, 5, andT . Also suppose that somewhere “nearby” the reference value
we have values for the conserved variables with an acceptable prggsinmg,unacceptable
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values for the densityy,, and temperaturd,. We wish to choose new values for the densit
and temperature from the one parameter family which lies on the igpbgp,. Since the
reference state is “nearby,” we will use those values to help us determine the new de
and temperature.

First consider the case whepg = p, where the reference point and the point wher
we wish to apply our boundary condition both lie on the same isobar. In this case,
want the points to coincide, i.e. choogg=p and T, =T. For this choice, all measures
of variation are zero since the values are identical. Note that any other choice on
isobar gives a splitting of the density and temperature, i.e. density increases (decre
while temperature decreases (increases). This splitting is the essence of “overhea
and it is this splitting behavior that we wish to avoid. We can avoid this by imposi
a simple restriction, that an increase in pressure should give an increase in both de
and temperature, while a decrease in pressure should give a decrease in both densi
temperature. We illustrate this graphically in Fig. 1. The lipes p and T =T divide
the temperature versus density graph of isobars into four regions based on the refe
value. Forp, > p the solution must lie in the upper right corner, whie< p dictates that
the solution must lie in the lower left corner. The diagonal corners represent splitting, wi
an increase (or decrease) in pressure is achieved by splitting density and temperature
that this splitting always gives a solution with more variation. For example, an increas
pressure can be achieved by increasing density, or temperature, or both. But if or
these decreases (density or temperature), then the other must increase just to balar
this decrease and achieve the same pressure, and then increase even more to ma
pressure rise. Thus the balancing (or splitting) to achieve the same pressure is w
variation, and only the final increase to achieve the necessary pressure increase is n
variation.

Temperature p= 6
Splitting
No Splitting
Splitting
N
T -
Splitting
No Splitting
Splitting
Density
Fay
P

FIG. 1. Diagram of “overheating” regions.
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3.1. Some Measures of Variation

Given a reference stat@, T), we measure the variation from it by

—p IT-T
:IpAp|+| |

\% ~
1y T

: 11

where the division by and T is done to nondimensionalize the individual variations of
density and temperature to give them equal weight.dhdT lie on a fixed isobar, chosen
by the numerical scheme, th&his a function of one variable, since specifyipdixes T
and vice versa. We differentiad as a function ofp (differentiating as a function of
leads to the same result) to get

Sto—p) ST - f)T’(p)

Vip) = F

: 12)

whereSis the sign function. (Note that the expression is not valid whenp or T =T).
Next we enforce the condition that there is no splitting, meaningdlaaid T both increase
for an increase in pressure and both decrease for a decrease in pressure. This con
implies thatS(p — p) = S(T — T), so that settiny’(p) = 0 allows us to divide out the sign
functions getting

T'(p) = —T/p, (13)

whereT’(p) is evaluated at some fixed pressyke For an ideal gas

, Po pRT T
T =— = - =—— 14
(0) V2R 7R >’ (14)
leading to the condition that
T T
—_— = (15)
P p

which can be rewritten using the equation of state to obtain

P =P\ Po/P (16)

as an exact closed form solution for the density. Or we could write Eq. (16) as

T=Tvpo/P 17)

giving an exact closed form solution for the temperature. Notice how an increase in press
Po > P, leads to an increase in both density and temperature, while a decrease in pres
Po < P, leads to a decrease in both density and temperature. In addition, note that t
closed form solutions predict equality in density and temperature when we have equalit
pressurep, = P, implying that they are valid in all cases.

We take a second derivative of Eq. (11) to get

ST-DT"(p)

V(p) = =

(18)
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FIG. 2. Minimization of the variatiorV.

which is not valid wherp =5 or T =T. For an ideal gasT”(p) > 0. This implies that
our closed form solution in Eq. (16) gives the minimum value\fan the case op, > P,
where S(T — T) > 0, but gives the maximum value &f in the case ofp, < p, where
S(T —T) <0. In fact, the minimum value fo¥ occurs on the boundary of the nonsplitting
region in case o, < P. Figure 2 is a graph of the minimization @funder the no splitting
restriction. Notice that the solution is unique fay > p and is given by Eq. (16). Then for
Po < P, the solution splits into two pieces and becomes multivalued withp or T =T
giving the minimization in the nonsplitting region.

At this point, we make two notes, concerning the case wipgre p. First there is no
clear reason to chooge= p, instead off = T or vice versa. Second, both of these solution
border on the splitting region leading to the possibility that small variations in the cha
of p andT may lead to “overheating.”

Next consider Eqg. (13) which dictates that the point chosen on the igpbap, to fix
“overheating” will have a slope of T /4. In addition note that the reference poifs, T),
on the isobap = p also has slope-T /4, which can be see by evaluatifig(p) at (5, T).
Thus Eq. (13) says that the point chosen on the isphamp, should have the same slope.
T’(p), as the reference point on the isol@a& p. We could think of this as minimizing
the variation in behavior between the two points; i.e., we could minimize the differel
between the slopes and arrive at Eq. (16) as our solution. This especially makes sense
one considers that

T'(p) = =P,/ pr 19)

and one considers the important role tipgtand pr play in the sound speeds. Figure &
shows the solution given by minimizing the variation in behavior, as defined by the sl
of the isobar at the given point.
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i
o>

Temperature P

Min

- >

Density
A

p

FIG. 3. Minimization of the variation in slop&’(p).

Consider the alternative formulation of the pressurepasp(p, €). For a calorically
perfect ideal gag=c, T, so thate/(p) =c,T'(p) and, thus, minimizing the variation in
behavior based oii’(p) is equivalent to minimizing the variation in behavior based or
€ (p), leading to the solution in Fig. 3 and Eq. (16). However, this is not true for genel
equations of state, where minimizing the variation in behavior baseéd (ph may be
different than minimizing the variation in behavior basedTdfp). In addition, note that
e=c,T implies that the measure of variation in Eq. (11) is identical if we congiderde,
instead ofp andT with the result shown in Fig. 2. Again, this is only valid whegc, T
with ¢, constant.

Since the errors in density and temperature can be seen in the entropy of an ideal
defined by

S=p/p”. (20)

it is natural to analyze the solution that occurs if we attempt to minimize the variation
entropy. In [17], Woodward and Colella compute a flow past a corner problem and sh
that the traditional methods do not give the appropriate steady-state solution. They noti
large entropy gradient at the corner and fix it by enforcing constant entropy. This entropy
removes the boundary layer in entropy, but the solution still does not converge to a ste
state. An additional constant enthalpy fix is applied to get the solution to converge t
steady state. This is an extremely popular method and more current details can be se
[15, 3]. We note that the constant entropy and enthalpy fix is only valid on a streamline
that Woodward and Colella use an upstream point as their reference point. In general,
cannot always find an upstream reference point and this fix cannot be applied. In fact,
constant enthalpy fix will change the velocity field which is unwanted in many cases. N
that this fix is isobaric (it does not change the pressure).
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FIG. 4. Minimization of the variation in entrop$.

From a more general standpoint we dismiss the use of a constant enthalpy fix, but con
a constant entropy fix. The constant entropy solution, or the minimization of the varia
in entropy, is shown in Fig. 4. While it lies in the nonsplitting region, we note that it mak
the assumption that the points lie on the same streamline which is not necessarily tru

4. ISOBARIC FIX

Given areference statg, T)onan isobap = p, we need to choose avalue for, T) on
the isobam = p, in order to minimize some sense of the variation to avoid “overheating
While there seem to be a few ways of doing this, we will focus our attention on three spe
ways: constanT’(p), constan€ (p), or constansS. For an ideal gas, holding eith&f(p)
or €(p) constant leads to Eq. (16), while holding entropy constant leads to

1y
p= p<%) (21)

as our isobaric fix.
For general equations of state, if we hold

T'(p)=—-— (22)

constant, then we need some assumptions to guarantee that the solution exists. For ex
if fixed pressures havk' (p) < Owithlim,_.o T (p) = co and lim,_, ., T (p) = 0 (to establish
the asymptotes), then a solution exists. In additibfy,0) > 0 will guarantee uniqueness.
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If we hold
€p) =—— (23)

constant, then we need similar conditionsegp) to those mentioned above for(p) in
order to guarantee a unigue solution.

For the general constant entropy case, note that entropy has partial derivatives orthog
to the left eigenvectors of the truly nonlinear fields, implying that they are a multiple of tl
left eigenvector of the linearly degenerate field. For the one-dimensional Euler equatic
we have [5]

s E+p _ 2
» p
Su | =« u , (24)
S -1
whereq is a constant and can be seen to be equat $ from the above equation. We

make a change of variables from the conserved variahlgsi, andE to the new variables
0, U, ande giving the relations

u uz e
s-s-(p)s+(5-7)s )
S — <1>& - (”)se (26)
P o
1

S - ()sE (27)
0

which can be substituted into Eq. (24), while setiing — Sz andS, =0 to get the relation

S, = —(p—pz)se (28)

for entropy. Since we only care about constant entropy, we write
S S
dS= (—) dp + (—) de=0 (29)
00 /) e oe/,

which can be rearranged to get

de

Sﬂ
= 30
b - s (30)
and, using Eq. (28), we have
de p
—=_r 31
d = o2 (31)

as an equation that guarantees constant entropy.



ISOBARIC FIX FOR THE OVERHEATING PROBLEM 555

As an example, consider a somewhat general equation of state

p= f(o)+dlp)e, (32)

where f (p) andg(p) are arbitrary functions gf. Then using Eq. (31) to impose constan
entropy, we have

de_(g(,o))e: f(p) (33)

dp p? p?

which is a first-order linear differential equation, solved with the integrating factor

w= exp(— % dp), (34)
yielding the solution
e 1{/“”2”) d,o+C(S)}, (35)
M P

whereC(S) is a constant function d. For an ideal gagp = (y — 1) pe with f (p) =0 and
g(p) = (y — D) p givinge= C(S)p* " from Eq. (35). We solve foE (S) using the equation
of state to get

p
C(S = , 36
(y —Dp” (36)
or equivalently,
&o=", (37)
p)/
leading to
1y
. po>
p=0p(—= (38)
(5
as a closed form solution (which is very similar to Eq. (16)).
4.1. Example: Tait Solid
Consider the Tait equation of state for a solid given by
o
p=(y - Do,pT - p; : (39)

wherey, ¢,, pa, ando are the Tait parameter, specific heat at constant volume, init
ambient density, and the nonideal solid parameter, respectively [8]. We integrate Eq.
setting the integration constantgowhich is the chemical energy stored in the solid,

Pa

vp
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SinceT’(p) <0, lim,_o T (p) =00, lim,_.» T(p) =0 andT”(p) > 0, there is a unique
solution for theT’(p) constant isobaric fix. We evaluate Eq. (22) to get

, T
T'(p) =—— (41)
yol
which leads to the condition
= — (42)

that can be rewritten using the equation of state as

~ [ Po+ pac/y
pP=p{ =, 43
\/ P+ pac/y “3)
T—F, |Potracly (44)
P+ pac/y

giving an exact closed-form solution.

Since€ (p) <0, lim,_ge(p) =00, lim,_,. €(p) =q, and€’(p) > 0, there is a unique
solution for the€'(p) constant isobaric fix. Note that the horizontal asymptteq is
sufficient for our purposes. We evaluate Eq. (23) to get

or equivalently,

(e—-a

€(p) = — (45)

which leads to the condition

(- _ (-0
o p

(46)

that can be rewritten using the equation of state as

~ [ Po+ pac
=04/ =, 47
p=r P+ pac *7)
~ Po + pac
e—g=(e-— _— 48
q=(€-q),/ S (48)

giving an exact closed form solution different from Egs. (43) and (44).
For constant entropy, we combine Egs. (39) and (40) to get

or equivalently,

p=( —Dpe—0q) — pao (49)
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with f(p) =—(y — 1)pq — pao andg(p) = (y — 1)p, implying that the integrating factor
in Eq. (34) isu = p*~ and the solution in Eq. (35) is

C(S) = PFpac/y. (50)

(y = Dpv

after suitable application of the equation of state. We prefer the equivalent

p+pac/y

C(9 = (51)
pV
as a more conventional definition. Note that this leads to
1/y
p=/3<Fio+,0a(7/V) (52)
P+ pac/y

as a closed-form solution which is more similar to Eq. (43) than to Eq. (47).

4.2. Example: Virial Gas

Consider the virial equation of state for a gas with the third and higher virial coefficie
set to zero,

p=pRT(1+ bp), (53)

whereb is the second virial coefficient [1]. We integrate Eq. (4), setting the integrati
constant to zero, getting

e=c,T (54)

as our internal energy per unit mass.
SinceT’(p) <0, lim,_o T(p) =00, lim,_,o T(p) =0, andT"(p) > 0O, there is a unique
solution for theT’(p) constant isobaric fix. We evaluate Eq. (22) to get

, T(1+ 2bp)
T = 55
) o(1+ bp) (59)
which leads to the condition
_Ta+2p)  TA+20p) _ (56)

p(L+bp) — pA+bp)

whereK is a constant equal td'(p), evaluated atp, T) on the isobamp = p. We use the
equation of state to rewrite this as

4bp, pPoK 2
fM=T"+(—=|T°- (%] =0 57
=7 ()T () 57)
and use Newton Raphson iteration [2] of the form
f(T")

Tn+1 — Tn _

fr(Tm)’ (>8)
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where
£/(T) = 4T3 + (12;]00>T2 -0 (59)

with the initial guess equal to either the reference temperafytle temperature provided
by the numerical schem@,, or any other convenient guess. We could have approach
this rootfinding through the density, but we have found that temperature iteration is eas
monitor and control [6].

Since€'(p) <0, lim,_ge(p) =00, lim,_, €(p) =0, ande’(p) > 0, there is a unique
solution for theg'(p) constant isobaric fix. We evaluate Eq. (23) to get

e(1+ 2bp)

€(p) = — 60
p o (1+ bp) (60)
which leads to the condition
_e(d+2bp) &1+ 2bp) (61)
p(1+bp) p(1+Dbp)
which can be rewritten to be identical to Eq. (56).
For constant entropy, we combine Egs. (53) and (54) to get
R
p= (¢ )oe+o) 62)
with f(p)=0and
R
9= (¢ Joca-+b0), (63)
implying that the integrating factor in Eq. (34) is
1
W (64)

~ pR/e exp(bRo/C,)

and the solution in Eq. (35) is

C(S = p/(CE)(H bp)pR/Cv”exp(iip) (65)

v ()

after suitable application of the equation of state. Once again we prefer

CO=p / 1+ bp)pR/%*lexp(bcip) (66)

v

as a more conventional definition. Note that settRyg, =y — 1 andb =0 reduces this to
the ideal gas case, as it should.
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4.3. Which Isobaric Fix?

In general, our preference is to use the isobaric fix that works the best, out of those
we find convenient to apply.

The constant entropy isobaric fix is difficult to write down in closed form for mar
general equations of state, and once written down, not always easy to apply (e.g., cor
the constant entropy isobaric fix for the virial gas above). In the case where the con:
entropy isobaric fix is hard to derive and apply, we choose to consider &it@rconstant,
or €(p) constant, or both, but we ignore the constant entropy isobaric fix.

Sometimes, for equations of state of the fopw= p(p, T), with the entire problem
formulated in terms of, it may be difficult or just inconvenient to find relations with
In these cases, we use th& p) constant isobaric fix and ignore tB& o) constant isobaric
fix. Likewise, equations of state of the form= p(p, €) with the entire problem formulated
in terms ofe, may not have readily available formulas basedlgrso we only apply the
€ (p) constant isobaric fix, ignoring thE'(p) constant isobaric fix.

For some equations of state, all analytic methods may be difficult or impossible to af
e.g. consider an equation of state in tabular form. In these cases we advocate the use
constant entropy isobaric fix, since a purely numerical approach is available. That is, g
p andy at a suitable reference state along withat the point in question, one can integrat
an ordinary differential equation to find an appropriate density. At constant entropy,

— =%, (67)

wherec is the local speed of sound, dependent on the local density and pressure (and
derivatives of the pressure). We apply the constant entropy isobaric fix by integrating
ordinary differential equation

dp 1
= 68

ap~ @ (68)
from p to po with initial datap = p. The final value ofp at p= ps is the value we use for
the isobaric fix. Note that exact integration of this ordinary differential equation gives
same density as analytically applying the constant entropy isobaric fix. Our experience
shown that this numerical approach is fairly robust and easy to apply.

5. AMOVING PISTON

One way of simulating moving pistons is to transform the Euler equations to an accel
ing reference frame which would keep the piston surface fixed in space and allow the u
exact ghost cells for a solid wall boundary condition. This transformation adds source te
to the right-hand side of the momentum and energy equations which can be integrat
time, along with the spatial derivative terms. The details are outlined in [8]. A drawbacl
this method is that it cannot conveniently treat multiple bodies with different accelerati
at the same time. Since we wish to couple our Eulerian code to multiple moving obj
and possibly to Lagrangian codes, we prefer to use the standard (nontransformed)
equations and treat the piston as a moving body with the appropriate boundary condit
For a general discussion on boundary conditions, see Chap. 19 in [9].
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5.1. Ghost Cells

We will allow a piston to move across the domain from left to right, with a specifi
velocity. This will be accomplished by tracking the piston location (using a level set in 2l
and then using ghost cells to define the interior of the piston. For a piston moving w
speedv, and exterior values of, u, e, andE, we define the interior reflected values as

p(2vp — u)?

(70)

For example, we consider a 20 cm domain consisting of 200 grid cells, where the pis
starts at rest at the left edge of the domain and moves with velogity. We compute this
problem by setting the left-hand boundary+0.5 cm, instead of O cm, thus putting five
ghost cells in our piston and increasing the total number of cells to 205.

5.2. Numerical Interpolation

Assume that a piston starts»at= 0 and that we have addgdunits of ghost cells to the
left of x =0. Consider the piston sitting at a poitin space with a velocity,. Then the
grid cells which lie inside the piston are numbered from Iptevhere

C Y + Xo
Io—{ dx ]-l—l, (72)

where [A] is the greatest integer less than or equaito

For each of the grid pointls from 1 toig, we identify the associated set of conservec
variables located outside the piston. A grid paiig located ax = (i — 1) dx — y and so
it is a distancexp — (i — 1) dx + y inside the piston surface, implying that the associate
reflected point is at the location

)2:Xo+X0—(i—1)dX+y (72)

which has neighbors which are the grid nodes

o {)“(+y

i } +1 (73)

andj + 1. The point is located
e=X+y—(j—1dx (74)

units to the right off anddx — ¢ units to the left ofj + 1.

We will use a second-order linear interpolation to find the values of the conserved v«
ables,U in between the grid nodes. This is a second-order boundary condition and shc
be good enough for third-order methods in the interior. If bpthnd j + 1 are exterior
points, then the interpolated value for the conserved variables is

Ujss — U
U=uj+e<‘+ax’>; (75)
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otherwise, ifj is a point which is inside the piston, i.e<io, then

Uj+1 - Uj+2)

dx (76)

U = Uj+1+ (dX_€)<
using linear extrapolation frotd;;; andUj,. Once the exact values dfare known, then
the new interior values are defined above, based on the piston velggity,

6. EXAMPLES

For the ideal gas we consider air with#+0.029 kg/mol ands = 1.4. For the Tait solid
equation of state, we haye=5, ¢, = 1500 J/kg K pa = 1900 kg/n¥, o = 8,980,000 n?/s?,
andqg = 0. For the virial gas equation of state, we h&re- 286.7 J/kg K,c, = 7168 J/kg K,
andb =0.00076 ni/kg.

The grid is set up to be a 1-m domain with 200 cells. The piston (or wall if not movin
is located at the left-hand side of the figure in all cases and ghost cells are added to th
of the piston. We do not print out the values of data at ghost cells, since they can be infe
from the real data points.

All schemes use third-order TVD Runge—Kutta for the time stepping [16], and in e
case the CFL is chosen near its limit.

As specified earlier, the isobaric fix is applied as a boundary condition after each E
substep of the TVD Runge—Kutta method. That is, we update the conserved variabl
the usual fashion for one substep, and then we use the isobaric fix to modify the comg
values of the conserved variables near the wall. For example, suppose that the valt
density, velocity, and pressure afg u;, and p; adjacent to the wall ang,, u,, andp, at
the next point over which we will use as a reference point. Then in the case of an ideal
we can use Eq. (16) to define

Prew = P24/ P1/ P2 (77)

as the new density adjacent to the wall. Theg,, u;, andp; can be reassembled to get the
new conserved variables.

6.1. Example 1

The purpose of this example is to illustrate how the isobaric fix works for a stand
shock reflection problem. We generate a shock using a standard shock tube prol
The generated shock moves to the left until it intersects the solid wall (located at O
and reflects off, causing “overheating.” Note that we numerically cut off (and disca
the contact discontinuity and rarefaction so that they do not interfere with our reflec
shock.

We use the ideal gas equation of state where the initial date for the shock tube prol
hasu =0 andT = 300 K. In addition, we choose the density to be 10 kym the left and
100 kg/n? on the right.

We use third-order ENO-RF [16] which is a low viscosity scheme and show the res
in Fig. 5. Note the “overheating” errors in the temperature and the density. Figures 6
7 show the positive effect that the isobaric fix can have on these “overheating” errors
shown in Fig. 8, the Marquina-style Jacobian evaluation [3, 4] will also reduce overhea
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FIG. 5. Ideal gas, ENO-RF, “overheating.”

with its built-in heat conduction mechanism (note that ENO-LLF-M stands for ENO-LL
with the Marquina-style Jacobian evaluation.) In Figs. 9 and 10, we show how the isob:
fix works in conjunction with the Marquina-style Jacobian evaluation. Note that the isoba
fix did not affect the shock speed or strength. In fact the intermediate points inside the st
are almost in the same location.
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FIG. 6. Ideal gas, ENO-RF'(p) constant.



ISOBARIC FIX FOR THE OVERHEATING PROBLEM 563
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FIG. 7. Ideal gas, ENO-RF, constant entropy.

At this point, we comment on conservation. A stationary solid wall boundary ha:
physical flux given by

pu 0
pul+p [ =[P, (78)
(E + p)u 0

den vel
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FIG. 8. Ideal gas, ENO-LLF-M.
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since the velocity is identically zero. Thus, mass and energy are completely conserved w
momentum is not conserved. The change in momentum for the computational domain
be found by summing the momentum fluxes at the boundaries. Achieving exact conserve
for mass and energy can easily be accomplished for stationary walls aligned with the gri
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setting the appropriate fluxes to zero. However, this can be excessively complicated to ¢
for multiple moving boundaries with irregular shapes. In either case, the isobaric fix \
create a small conservation error in mass and energy in favor of a better solution. How
in the later case, difficulties of scheme implementation may force relaxation of mass
energy conservation, even without the isobaric fix. In this case, the small conservation «
generated by the isobaric fix is not an issue. Note that all the shocks in our example
located in the correct cell and move with the appropriate speed, even with the relaxatic
exact conservation at the boundary.

6.2. Example 2

In this example we start the fluid at rest= 0, and all =300 K. Then the piston (initially
located at 0 m) is instantaneously set to a velocity of 1000 m/s driving to the right. Ther
no time for the fluid to react to a smoothly accelerated piston. Our acceleration is infin

Ouir first test is with the ideal gas equation of state where we choose the uniform in
density to be 10 kg/fh The results are shown in Fig. 11 for ENO-RF. The result§fop)
constant isobaric fix (equivalent &p) constant isobaric fix) are shown in Fig. 12, while
the results for the constant entropy isobaric fix are shown in Fig. 13.

Next we try the Marquina-style Jacobian evaluation and note that it suffers from “unc
heating” as shown in Fig. 14 for ENO-LLF-M. In Fig. 15, we combine ENO-LLF-M wit}
the T'(p) constant isobaric fix and note that the isobaric fix improves the “underheatil
problem.

For the Tait solid equation of state, we choose the uniform initial density to be 1908.kg/
The results in Fig. 16 show the “overheating” errors for the ENO-LLF scheme. Figures
18, and 19 show the improvement gained by using any of the three isobaric fixes.
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FIG. 11. Ideal gas, ENO-RF, “overheating.”
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den vel
45<;m3;:¢!3mm33 T 2000} R
=
aol g
as} ] 1500} E
o
30 1
1000 s 4
25|
20 4
S500F B
15t o J
10 OO F ORI TR
0.4 0.45 0.5 O.55 -4 0.45 0.5 0.55
x 10° press temp
15 3 1200
> 11 oo‘m':‘uuxmmmb 1
=
1000 1
1ol ] 900} 4
o 800 1
7Oo0| 1
800 | 1
st E
SO0} 1
(= 400 1
Cocrrrrroroooeed 300} Rccorcroocoosy
ot ]
0.4 0.45 0.5 0.55 o.4 0.45 0.5 0.55
FIG. 12. Ideal gas, ENO-RF[’(p) constant.
den vel
45:;;.Immzm 1 2000 g
C
a0} g
as | - J 1500} E
30 4
1000 s g
25 1
20 R
500 kR
=)
15} 1
10} RO F ReoCOOOCoaOooc
o.4 ©.45 0.5 0.55 - 0.45 0.5 0.55
x 10° press temp
1SF B
==] 1 1 OO DO TN, 1
©
1000 1
2900 1
10} P 4
800 1
700 1
600} 1
sl J
S00 B
=2
400 1
Coocrrroererod 300} CODCTOCOOOCCTED
o E
0.9 0.45 0.5 .55 o.4 0.45 0.5 0.55
FIG. 13. Ideal gas, ENO-RF, constant entropy.




ISOBARIC FIX FOR THE OVERHEATING PROBLEM

den vel
SO F B
ssP ] 2000} B
o
50}t o L
4SS O‘W 1 1500} E
a0l P, g
ssr 1 1000
o, J
aol hd
25 1 o
20} (=1 ] 500} b
1S 1
10} Froooaonocoos o COOOCOCCOCOO00S
o.4 .45 0.5 0.55 0.4 0.45 0.5 0.55
x 10°% pPross temp
15
PO EOCICOOOOOCCCO -, 1100 P o) 4
o o
. 1000 o R
200 1
10 1 b o
800 1
7OO}| 1
800 b
(=3 o 4
500 b
400 | 1
Reroooooooooonod 300 OO
oL 4
o.4 0.45 0.5 0.55 0.4 0.45 0.5 0.55
FIG. 14. Ideal gas, ENO-LLF-M, “underheating.”
den vel
45<;:m‘55:mmmq:, 1 2000 1
a0} o E
asl| ] 1800} 1
30 1
1000 =1 1
2s} g =
=
20 g <
500} i
is| b
10} Cemcooooacooeod
o.4 0.45 0.5 0.55 o.4 0.45 0.5 0.55
x 10° press temp
15 F B 1200
=g 11 00 P  rrmroonoaer s, 1
=3
< 1000 1
10 4 800 o 4
800 1
700} B
=3
st ] 800
500 1
400 | 1
S 300} COOCOCOOCOOOOOD
ot 4
o.4 0.45 0.5 0.55 o.4 0.45 0.5 0.55
FIG. 15. Ideal gas, ENO-LLF-M]T’(p) constant.




568

FEDKIW, MARQUINA, AND MERRIMAN

den vel
2400 g 1000 ]
<
2asol © < 1 <
2300 E soo | |
2280 P o B o
22009 1 eoo} R
2180} 4
2100} 1 400 )
2080} . 1 -
2000 | 1 200} 1
1950} g
< (=)
1900 | pnnnnond oFF AR
0.05 0.1 0.15 0.2 0.25 0.3 0.08 0.1 0.15 o.2 o.25 0.3
x 10° press temp
10 E 1000}
9 o =] 4 <B
s < 900 | o, 1
- 1 (=4
7t 1 800 1
er < 1 700} =S 1
sl ]
al ] eoo| 1
3r 1 s00 | E
2F (=3 B (=]
a00 | 1
at ]
or Vtrrmob 300+ Booooood
0.08 .1 0.15 0.2 0.25 0.3 o.08 0.1 0.15 0.2 0.25 0.3
FIG. 16. Tait solid, ENO-LLF, “overheating.”
den vel
2400} ]
(=3 1000 ‘>°
2350 1
2300} - g sool > ]
2280 1
2200} 1 eool ]
2150} 1
2100 4 ao00} ]
2080 e R e
2000} g 200 1
1950} 1
(=] (=3
1900 < o O
o.05 0.1 0.15 o.2 0.25 0.3 0.08 0.1 0.15 0.2 0.25 0.3
x 10° press t@mp
10F 3
2900.L 4
9T s T o
ar 1 8aoco| 1
kd 4 g <
<
el | 700 1
sr 1 soo| 1
4 F 4
al ] s00 ° 1
2t e 1
400} 1
1t E
ol °annn:> 300 Om:
0.08 0.1 0.18 0.2 0.25 o.a 0.08 0.1 0.15 0.2 0.25 o.3

FIG. 17. Tait solid, ENO-LLF,T'(p) constant.



ISOBARIC FIX FOR THE OVERHEATING PROBLEM 569
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den vel

10
2.5}
—20 |

8.5
—a0}

7.5 —8O |

jpp—
7
e.sk —aof
sl
<P -100
s.5¢ E
o.2 o.a o.6 o.8 1 0.2 o.a o.e o.a 1
x 10° press temp
aso
8.5 zaof
330
sl
320
7.5
310¢ ]
7r 300
s.sh 290 E
280 E
sl
z7o[a 1
s.5 260
o.2 o.a o.6 o.8 1 o.2 o.4 0.6 o.8 4

FIG. 22. Ideal gas, ENO-RF, “overheating.”

In general, the isobaric fix does not completely eliminate the “overheating” errors, b
doeslimitthem to more acceptable levels. In contrast, unfixed schemes can accumulate
errors in density and temperature. In fact, our experiments have shown that some sck
will eventually fail due to nonphysical negative values of either density or temperature

6.3. Example 3

Inthis example we start the fluid at rest= 0, and ail =300 K. Then the piston (initially
located at 0.3 m) is instantaneously setto a velocity 0 m/s. Thatis, we instantaneously
pull the piston to the left (away from the fluid).

We use the ideal gas equation of state with a uniform initial density of 10%dtre
results in Fig. 22 show the “overheating” errors for the ENO-RF scheme, while Fig.
shows the results with th&’(p) constant isobaric fix (which is equivalent to tB&p)
constant isobaric fix). Figure 24 shows the results with the constant entropy isobaric fi

6.4. Example 4

Inthis example, we consider test cases from [14]. Consider a 1-m domain with a statio
solid wall boundary located at 0 m. We use 100 grid points Wiﬂﬂg and M= 0.029 kg/mol
in the ideal gas equation of state. Initially=1,u = — 1, andp = 0 are defined everywhere
on the domain. Note that the wall is placed at a flux, not at a grid point.

Since the sound speed is initiakly= 0, we use the second-order central scheme fro
[11]. Figure 25 shows the “overheating” errors, and Fig. 26 shows the improvement \
the T’(p) constant isobaric fix.

7. ATWO-DIMENSIONAL TEST

In this section we consider the two-dimensional Mach-3 step flow test problem [1
where the reflecting boundary conditions are crucial in determining the quality of
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numerical approximation. The tunnel is 3 units long and 1 unit wide with a 0.2 unit hic
step which is located 0.6 units from the left-hand side of the tunnel. We use a gamma
gas withy = 1.4. The initial conditions arg =1.4, p=1, u=3, andv=0. An inflow

boundary condition is applied at the left end of the computational domain and an outfl
boundary condition is applied at the right end. We apply reflecting boundary conditic
along the walls of the tunnel.
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The density profile is the hardest to compute due to the Mach stem at the upper wal
the contact discontinuity it generates and due to the corner of the step which is a singul
of the boundary of the domain and the center of a rarefaction fan, i.e. a singular poir
the flow. In an attempt to minimize numerical errors generated at the corner of the «
Woodward and Colella propose an additional boundary condition [17] near the corne
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FIG. 27. Contour plots of numerical approximations to the density: PHM-RF (top); PHM-RF with constal
T’(p) isobaric fix (middle); PHM-LLF (bottom).

the step in order to maintain steady flow around this singular point. They propose t
corrections: constant entropy and constant enthalpy to a group of six cells near the cc
of the step using an upstream point as a reference. The details of these two correction
outlined in [3] (in EqQ. (24) of [3], the second appearancep$hould beR;).

The overheating phenomenon can be observed along all reflecting boundaries of
domain by looking atthe level curves near the walls. More orthogonal level curves imping
on the reflecting walls imply less “overheating” errors. We note thafTthi@) constant
isobaric fix dramatically reduces “overheating” errors, and a direct consequence of -
is an additional reduction in other errors such as the “kinked” Mach stem and numeri
artifacts related to the “carbuncle phenomenon” (associated with nearly stationary shc
near a reflecting wall). We note that Marquina’s flux splitting eliminated these numeric
pathologies in [3].

The numerical results shown are on an equally spaced griddxitady = 4—10 and finer
grids showed similar results. We run the code to a final time=o# when the flow has a
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FIG. 28. Adiabatic exponents for the previous figure (one-dimensigrsgctions ay = 0.2).

rich and interesting structure which is the “culture medium” for growing numerical err
associated with near stationary shock waves aligned with the grid, and their interaction
reflecting walls producing large “overheating” errors. In order to be concise we ran all
experiments for the third-order PHM reconstruction [12]. Each contour plot in this sect
displays 30 equally spaced level curves between the minimum and maximum values ¢
computed density.

In this first example, we use the standard Jacobian technique, as opposed to Marqt
flux splitting. In addition we use the standard six cell enthalpy and entropy correct
In the top plot of Fig. 27 we display numerical approximations of the flow density f
PHM-RF (the “RF” notation is described in [16]) where the “kinked” Mach stem is co
spicuous. The middle plot was obtained with the same algorithm witfi th® constant
isobaric fix correction applied along the solid walls using the third cell from the wall
correct the second cell from the wall and then that cell to correct the cell adjacent to
wall (we find this double correction satisfactory for high-order resolution). The bottc
plot represents the numerical approximation obtained with the more viscous PHM-I
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FIG.29. Contour plots of numerical approximations to the density with PHM-RF-M: standard corner treatme
(top); standard corner treatment with o) constant isobaric fix (middle); no entropy correction vilitkip) constant
isobaric fix (bottom).

(the LLF notation is described in [16]). While both the isobaric fix and the more visco
PHM-LLF method removed the “kinked” Mach stem pathology, the isobaric fix has tt
advantage of a much sharper contact discontinuity. In Fig. 28 we display the correspon
y = 0.2 section of the adiabatic exponent to see how entropy is preserved at the corner o
step.

In this example we use PHM-RF-M (where the “M” denotes the application of Marquinz
flux splitting technique, as opposed to the standard Jacobian evaluation). In the top plc
Fig. 27, we used the standard corner treatment. The middle plot uses the standard c
treatment with thél’(p) constant isobaric fix along reflecting walls. The bottom plot wa
obtained by applying the isobaric fix with constan{p) along reflecting walls and only
an enthalpy correction at the corner, i.e. no entropy correction at the corner. Note that
bottom numerical approximation gives an accurate prediction of the shock wave locat
without the entropy fix! This is the only method we know of that can predict the sho
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FIG. 30. Adiabatic exponents for the previous figure (one-dimensigrsdctions ay = 0.2).

3

wave location without the entropy fix. In Fig. 30 we observe the entropy preservation at
corner for the corresponding numerical approximations that appear in Fig. 29.

N

REFERENCES

. P. Atkins,Physical Chemistry5th ed. (Freeman, San Francisco, 1994).
. K. E. Atkinson,An Introduction to Numerical Analys{#Viley, New York, 1989).

. R. Donat and A. Marquina, Capturing shock reflections: An improved Flux ForduGomput. Physl25
42 (1996).

4. R. Fedkiw, B. Merriman, R. Donat, and S. Osh€he Penultimate Scheme for Systems of Conserv

tion Laws: Finite Difference ENO with Marquina’s Flux SplittingCLA CAM Report 96-18, July 1996.
[http://mww.math.ucla.edu/applied/cam/.]
. R. Fedkiw, B. Merriman, and S. Osher, Efficient characteristic projection in upwind difference scheme:
hyperbolic systems (the complementary projection methbdjpmput. Physl41, 22 (1998).
. R. Fedkiw, B. Merriman, and S. Osher, High accuracy numerical methods for thermally perfect gas flows
chemistryJ. Comput. Physl32, 175 (1997).



578 FEDKIW, MARQUINA, AND MERRIMAN

7.

11.

12.

13.

14.

15.

16.

17.

P. Glaister, An approximate linearised Riemann solver for the Euler equations for realg@&sesput. Phys.
74,382 (1988).

. K. A. Gonthier,A Numerical Investigation of the Evolution of Self-Propagating Detonation in Energeti

Granular Solids Dissertation, University of Notre Dame, 1996.

. C. HirschNumerical Computation of Internal and External Flgwél. 2 (Wiley, New York, 1990).
10.

G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schén@smput. Physl26 202
(1996).

X-D. Liu and S. Osher, Convex ENO high order schemes without field-by-field decomposition or stagge
grids,J. Comput. Physl42 304 (1998).

A. Marquina, Local piecewise hyperbolic reconstruction of numerical fluxes for nonlinear scalar conserva
laws,SIAM J. Sci. Compull5, 892 (1994).

R. Menikoff, Errors when shock waves interact due to numerical shock v8taiM J. Sci. Compufl5(5),
1227 (1994).

W. Noh, Errors for calculations of strong shocks using an artificial viscosity and an artificial heat fit
J. Comput. Physi2, 78 (1978).

R. Sanders and A. Weiser, High resolution staggered mesh approach for nonlinear hyperbolic syster
conservation laws]. Comput. Physl01, 314 (1992).

C. W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock capturing scheme
J. Comput. Phys83, 32 (1989).

P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocl
J. Comput. Phys4, 115 (1984).



	1. INTRODUCTION
	2. EULER EQUATIONS
	3. IDEAL GAS
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.

	4. ISOBARIC FIX
	5. A MOVING PISTON
	6. EXAMPLES
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.
	FIG. 17.
	FIG. 18.
	FIG. 19.
	FIG. 20.
	FIG. 21.
	FIG. 22.
	FIG. 23.
	FIG. 24.
	FIG. 25.
	FIG. 26.

	7. A TWO-DIMENSIONAL TEST
	FIG. 27.
	FIG. 28.
	FIG. 29.
	FIG. 30.

	REFERENCES

