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In many problems of interest, solid objects are treated as rigid bodies in com-
pressible flowfields. When these solid objects interact with certain features of the
compressible flowfield, inaccurate solutions may develop. In particular, the well-
known “overheating effect” occurs when a shock reflects off of a stationary solid
wall boundary causing overshoots in temperature and density, while pressure and
velocity remain constant (see, e.g., [3, 7, 13, 14]). This “overheating effect” is more
dramatic when compressible flows are coupled to moving solid objects (e.g., moving
pistons), where the nonphysical density and temperature overshoots can be cumula-
tive and lead to negative values. We consider the general class of material interface
problems where numerical methods can predict pressure and velocity adequately, but
fail miserably in their prediction of density and temperature. Motivated by both total
variation considerations and physical considerations, we have developed a simple but
general boundary condition for this class of problems. This new boundary condition
does not change the pressure or the velocity predicted by the numerical method, but
does change the density and the temperature in a fashion consistent with the equation
of state resulting in new values that minimize a specific measure of variation at the
boundary. c© 1999 Academic Press

1. INTRODUCTION

The well-known “overheating effect” occurs when a shock reflects off of a stationary
solid wall boundary causing overshoots in temperature and density, while pressure and
velocity remain constant. Note that the solid wall boundary condition is usually applied as
a reflection condition so that a shock impinging on a wall is met by a reflected shock of
equal strength traveling in the opposite direction causing the appropriate reflection. (This
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leads one to the obvious conclusion that “overheating” may occur within a fluid when two
equal strength shocks collide.) In [7], Glaister illustrates “overheating effects” at solid wall
boundaries for many different equations of state, including the standard gamma law gas.

In [13], Menikoff argues that this error is caused by the smeared out numerical shock
profile and that the spatial width of this error shrinks to zero as the effective scheme viscosity
shrinks to zero. However, he also shows that the maximum overshoot at the wall does not
shrink as the numerical dissipation goes to zero; i.e., the solution converges in theL2 sense,
but not in theL∞ sense as the scheme viscosity approaches zero. In addition, he points out
that the pressure and velocity profiles at the wall equilibrate quickly, while the temperature
and density (or equivalently entropy) errors persist. Menikoff believes that this error is a
symptom of the numerical scheme’s unsuccessful attempt to model a physical phenomenon
which occurs in real shock tubes.

In [14], Noh had pointed out many of the effects that Menikoff later discussed in [13].
Noh also stated that heat conduction at the wall would dissipate this entropy error and that
the failure of numerical schemes is due in part to the absence of heat conduction at the wall.
In fact, he shows that a scheme with built-in heat conduction could help to alleviate the
problem, allowing convergence in theL∞ sense as well.

In [3], Marquina proposed a flux splitting method which seems to possess a built in heat
conduction mechanism. When this flux splitting is used with a low viscosity scheme (e.g.,
ENO [16] or WENO [10]), the error due to scheme viscosity is minimized and the built
in heat conduction mechanism helps to dissipate the remaining entropy errors, allowing
convergence in both theL2 andL∞ sense. In general this works well, but there are times
when the heat conduction mechanism invoked by Marquina’s flux splitting works on a much
slower time scale than the accumulation of the entropy error leading to a lack of convergence
of the solution and the possibility of polluting other flow features in the computational
domain.

Suppose we solve the Euler equations on a fixed grid with a moving solid object. The solid
object will sweep through the compressible flow, causing the appearance and disappearance
of grid points in the Eulerian flow. For example, consider a piston moving from left to right
in a one-dimensional Eulerian code where the piston continues to cross over grid points
removing them from the computational flowfield. In these types of problems, the entropy
errors occurring at the interface will be cumulative and may accumulate faster than the
built-in heat conduction mechanism can dissipate them. In fact, this can lead to dramatic
overshoots in the solution, resulting in negative values in density or temperature. In these
instances one needs to fix the entropy error faster than it accumulates. One natural way of
doing this is by the application of a boundary condition.

Consider the Euler equations at a given point. If we fix pressure and velocity, then there
is one degree of freedom in choosing the solution, e.g. we may choose density, then the
equation of state determines the temperature (and thus the internal energy). “Overheating”
occurs, when the numerical method chooses a value from this one parameter family which is
widely different from the accepted physical value. In these instances, pressure and velocity
seem to match the accepted solution, but the scheme does not predict an acceptable value for
the third variable (density or temperature). In the common instance that this “overheating”
occurs at a material boundary, it usually starts locally, motivating the implementation of a
fix in the form of a boundary condition.

We begin by assuming that the numerical scheme has chosen an adequate pressure and
consider the problem from a physical standpoint. On a graph of temperature versus density,
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this pressure dictates the isobar (constant pressure line) that the solution to the problem lies
on. For the case of an ideal gas, with equation of statep= ρRT, the isobars are a family of
hyperbolae of the formT = Ao/ρ, whereAo= po/R is a different constant on each isobar
(i.e., the hyperbolae are parameterized by pressure and a specific isobar can be labeled
p= po). The pressure predicted by the numerical schemes dictates the choice of hyperbola
associated with the solution. “Overheating” occurs when the numerical scheme chooses a
density which is too small corresponding to a temperature which is too large. Similarly,
“underheating” occurs when the numerical scheme chooses a density which is too large
corresponding to a temperature which is too small. Since every point on this isobar has
the same pressure, we are free to choose any point we wish, without changing the pressure
predicted by the numerical scheme. Our boundary condition consists of choosing a point
on this isobar which is a better candidate for the solution than the obviously wrong choice
given by the numerical scheme. That is, the numerical method picks out a reasonable isobar
(i.e., pressure), but chooses the wrong point on that isobar. Our boundary condition consists
of choosing a better point.

In the extreme limits of the hyperbola, we may choose density as large as we wish (small
temperature) or as small as we wish (large temperature). Since both of these choices lead to
extreme “overheating” and our goal is to reduce “overheating,” we want to avoid the ends
of the hyperbola and stay near the center. However, there is no clear choice for the point
without some measure of an acceptable solution. Since we believe that “overheating” starts
locally, near a material interface, we apply our “overheating fix” as a boundary condition
and assume that the nearby points are better behaved (no “overheating” or less dramatic
“overheating”) using them as a reference from which to choose our boundary condition. We
will choose our boundary condition on our fixed isobar (given by the numerical scheme) to
minimize the difference in behavior between it and one or more of its neighbors.

2. EULER EQUATIONS

Consider the 1D Euler equations ρ

ρu
E


t

+

 ρu

ρu2+ p

(E + p)u


x

= 0, (1)

wheret is time,x is space,ρ is the density,u is the velocity,E is the total energy per unit
volume, andp is the pressure. The total energy is the sum of the internal energy and the
kinetic energy,

E = ρe+ ρu2

2
, (2)

wheree is the internal energy per unit mass.
In general, the pressure can be written as a function of density and internal energy,

p= p(ρ, e), or as a function of density and temperature,p= p(ρ, T). In order to complete
the model, we need an expression for the internal energy per unit mass. Sincee= e(ρ, T)
we write

de=
(
∂e

∂ρ

)
T

dρ +
(
∂e

∂T

)
ρ

dT (3)



          

548 FEDKIW, MARQUINA, AND MERRIMAN

which can be shown to be equivalent to

de=
(

p− T pT

ρ2

)
dρ + cv dT, (4)

wherecv is the specific heat at constant volume [1].
The sound speeds associated with the equations depend on the partial derivatives of the

pressure, eitherpρ and pe or pρ and pT , where the change of variables from density and
internal energy to density and temperature is governed by the following relations

pρ → pρ −
(

p− T pT

cvρ2

)
pT (5)

pe→
(

1

cv

)
pT (6)

and the sound speedc is given by

c =
√

pρ + ppe/ρ2 (7)

for the case wherep= p(ρ, e) and

c =
√

pρ + T(pT )2/cvρ2 (8)

for the case wherep= p(ρ, T).

3. IDEAL GAS

We will motivate our new boundary condition by first considering an ideal gas. For an ideal
gas p= ρRT whereR= Ru/M is the specific gas constant, withRu≈ 8.31451J/mol K
the universal gas constant andM the molecular weight of the gas. Also valid for an ideal
gas iscp− cv = R, wherecp is the specific heat at constant pressure. Additionally, gamma
as the ratio of specific heatsγ = cp/cv [6].

For an ideal gas, Eq. (4) becomes

de= cv dT (9)

and, assuming thatcv does not depend on temperature (calorically perfect gas), we integrate
to obtain

e= cvT, (10)

where we have sete to be zero at 0 K. Note thate is not uniquely determined, and we could
choose any value fore at 0 K (although one needs to use caution when dealing with more
than one material to be sure that integration constants are consistent with the heat release
in any chemical reactions that occur).

Suppose that we have acceptable reference values for all conserved variables from which
we can assemblêp, ρ̂, andT̂ . Also suppose that somewhere “nearby” the reference values,
we have values for the conserved variables with an acceptable pressure,po, but unacceptable
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values for the density,ρo, and temperature,To. We wish to choose new values for the density
and temperature from the one parameter family which lies on the isobarp= po. Since the
reference state is “nearby,” we will use those values to help us determine the new density
and temperature.

First consider the case wherepo= p̂, where the reference point and the point where
we wish to apply our boundary condition both lie on the same isobar. In this case, we
want the points to coincide, i.e. chooseρo= ρ̂ andTo= T̂ . For this choice, all measures
of variation are zero since the values are identical. Note that any other choice on this
isobar gives a splitting of the density and temperature, i.e. density increases (decreases)
while temperature decreases (increases). This splitting is the essence of “overheating,”
and it is this splitting behavior that we wish to avoid. We can avoid this by imposing
a simple restriction, that an increase in pressure should give an increase in both density
and temperature, while a decrease in pressure should give a decrease in both density and
temperature. We illustrate this graphically in Fig. 1. The linesρ= ρ̂ and T = T̂ divide
the temperature versus density graph of isobars into four regions based on the reference
value. Forpo> p̂ the solution must lie in the upper right corner, whilepo< p̂ dictates that
the solution must lie in the lower left corner. The diagonal corners represent splitting, where
an increase (or decrease) in pressure is achieved by splitting density and temperature. Note
that this splitting always gives a solution with more variation. For example, an increase in
pressure can be achieved by increasing density, or temperature, or both. But if one of
these decreases (density or temperature), then the other must increase just to balance out
this decrease and achieve the same pressure, and then increase even more to match the
pressure rise. Thus the balancing (or splitting) to achieve the same pressure is wasted
variation, and only the final increase to achieve the necessary pressure increase is needed
variation.

FIG. 1. Diagram of “overheating” regions.
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3.1. Some Measures of Variation

Given a reference state(ρ̂, T̂), we measure the variation from it by

V = |ρ − ρ̂|
ρ̂
+ |T − T̂ |

T̂
, (11)

where the division by ˆρ and T̂ is done to nondimensionalize the individual variations of
density and temperature to give them equal weight. Ifρ andT lie on a fixed isobar, chosen
by the numerical scheme, thenV is a function of one variable, since specifyingρ fixesT
and vice versa. We differentiateV as a function ofρ (differentiating as a function ofT
leads to the same result) to get

V ′(ρ) = S(ρ − ρ̂)
ρ̂

+ S(T − T̂)T ′(ρ)
T̂

, (12)

whereS is the sign function. (Note that the expression is not valid whenρ= ρ̂ or T = T̂).
Next we enforce the condition that there is no splitting, meaning thatρ andT both increase
for an increase in pressure and both decrease for a decrease in pressure. This condition
implies thatS(ρ− ρ̂)= S(T − T̂), so that settingV ′(ρ)= 0 allows us to divide out the sign
functions getting

T ′(ρ) = −T̂/ρ̂, (13)

whereT ′(ρ) is evaluated at some fixed pressurepo. For an ideal gas

T ′(ρ) = − po

ρ2R
= −ρRT

ρ2R
= −T

ρ
, (14)

leading to the condition that

−T

ρ
= − T̂

ρ̂
(15)

which can be rewritten using the equation of state to obtain

ρ = ρ̂
√

po/ p̂ (16)

as an exact closed form solution for the density. Or we could write Eq. (16) as

T = T̂
√

po/ p̂ (17)

giving an exact closed form solution for the temperature. Notice how an increase in pressure,
po> p̂, leads to an increase in both density and temperature, while a decrease in pressure,
po< p̂, leads to a decrease in both density and temperature. In addition, note that these
closed form solutions predict equality in density and temperature when we have equality in
pressure,po= p̂, implying that they are valid in all cases.

We take a second derivative of Eq. (11) to get

V ′′(ρ) = S(T − T̂)T ′′(ρ)
T̂

(18)
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FIG. 2. Minimization of the variationV .

which is not valid whenρ= ρ̂ or T = T̂ . For an ideal gas,T ′′(ρ)>0. This implies that
our closed form solution in Eq. (16) gives the minimum value forV in the case ofpo> p̂,
where S(T − T̂)>0, but gives the maximum value ofV in the case ofpo< p̂, where
S(T − T̂)<0. In fact, the minimum value forV occurs on the boundary of the nonsplitting
region in case ofpo< p̂. Figure 2 is a graph of the minimization ofV under the no splitting
restriction. Notice that the solution is unique forpo≥ p̂ and is given by Eq. (16). Then for
po< p̂, the solution splits into two pieces and becomes multivalued withρ= ρ̂ or T = T̂
giving the minimization in the nonsplitting region.

At this point, we make two notes, concerning the case wherepo< p̂. First there is no
clear reason to chooseρ= ρ̂, instead ofT = T̂ or vice versa. Second, both of these solutions
border on the splitting region leading to the possibility that small variations in the choice
of ρ andT may lead to “overheating.”

Next consider Eq. (13) which dictates that the point chosen on the isobarp= po to fix
“overheating” will have a slope of−T̂/ρ̂. In addition note that the reference point,(ρ̂, T̂),
on the isobarp= p̂ also has slope−T̂/ρ̂, which can be see by evaluatingT ′(ρ) at (ρ̂, T̂).
Thus Eq. (13) says that the point chosen on the isobarp= po should have the same slope,
T ′(ρ), as the reference point on the isobarp= p̂. We could think of this as minimizing
the variation in behavior between the two points; i.e., we could minimize the difference
between the slopes and arrive at Eq. (16) as our solution. This especially makes sense when
one considers that

T ′(ρ) = −pρ/pT (19)

and one considers the important role thatpρ and pT play in the sound speeds. Figure 3
shows the solution given by minimizing the variation in behavior, as defined by the slope
of the isobar at the given point.
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FIG. 3. Minimization of the variation in slopeT ′(ρ).

Consider the alternative formulation of the pressure asp= p(ρ, e). For a calorically
perfect ideal gase= cvT , so thate′(ρ)= cvT ′(ρ) and, thus, minimizing the variation in
behavior based onT ′(ρ) is equivalent to minimizing the variation in behavior based on
e′(ρ), leading to the solution in Fig. 3 and Eq. (16). However, this is not true for general
equations of state, where minimizing the variation in behavior based one′(ρ) may be
different than minimizing the variation in behavior based onT ′(ρ). In addition, note that
e= cvT implies that the measure of variation in Eq. (11) is identical if we considerρ ande,
instead ofρ andT with the result shown in Fig. 2. Again, this is only valid whene= cvT
with cv constant.

Since the errors in density and temperature can be seen in the entropy of an ideal gas
defined by

S= p/ργ , (20)

it is natural to analyze the solution that occurs if we attempt to minimize the variation in
entropy. In [17], Woodward and Colella compute a flow past a corner problem and show
that the traditional methods do not give the appropriate steady-state solution. They notice a
large entropy gradient at the corner and fix it by enforcing constant entropy. This entropy fix
removes the boundary layer in entropy, but the solution still does not converge to a steady
state. An additional constant enthalpy fix is applied to get the solution to converge to a
steady state. This is an extremely popular method and more current details can be seen in
[15, 3]. We note that the constant entropy and enthalpy fix is only valid on a streamline and
that Woodward and Colella use an upstream point as their reference point. In general, one
cannot always find an upstream reference point and this fix cannot be applied. In fact, the
constant enthalpy fix will change the velocity field which is unwanted in many cases. Note
that this fix is isobaric (it does not change the pressure).
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FIG. 4. Minimization of the variation in entropyS.

From a more general standpoint we dismiss the use of a constant enthalpy fix, but consider
a constant entropy fix. The constant entropy solution, or the minimization of the variation
in entropy, is shown in Fig. 4. While it lies in the nonsplitting region, we note that it makes
the assumption that the points lie on the same streamline which is not necessarily true.

4. ISOBARIC FIX

Given a reference state(ρ̂, T̂) on an isobarp= p̂, we need to choose a value for(ρ, T) on
the isobarp= po in order to minimize some sense of the variation to avoid “overheating.”
While there seem to be a few ways of doing this, we will focus our attention on three specific
ways: constantT ′(ρ), constante′(ρ), or constantS. For an ideal gas, holding eitherT ′(ρ)
or e′(ρ) constant leads to Eq. (16), while holding entropy constant leads to

ρ = ρ̂
(

po

p̂

)1/γ

(21)

as our isobaric fix.
For general equations of state, if we hold

T ′(ρ) = − pρ
pT

(22)

constant, then we need some assumptions to guarantee that the solution exists. For example,
if fixed pressures haveT ′(ρ)<0 with limρ→0 T(ρ)=∞and limρ→∞ T(ρ)= 0 (to establish
the asymptotes), then a solution exists. In addition,T ′′(ρ)>0 will guarantee uniqueness.
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If we hold

e′(ρ) = − pρ
pe

(23)

constant, then we need similar conditions one(ρ) to those mentioned above forT(ρ) in
order to guarantee a unique solution.

For the general constant entropy case, note that entropy has partial derivatives orthogonal
to the left eigenvectors of the truly nonlinear fields, implying that they are a multiple of the
left eigenvector of the linearly degenerate field. For the one-dimensional Euler equations,
we have [5]  Sρ

Sρu

SE

 = α


E+ p
ρ
− u2

u

−1

 , (24)

whereα is a constant and can be seen to be equal to−SE from the above equation. We
make a change of variables from the conserved variablesρ, ρu, andE to the new variables
ρ, u, ande giving the relations

Sρ → Sρ −
(

u

ρ

)
Su +

(
u2

2ρ
− e

ρ

)
Se (25)

Sρu →
(

1

ρ

)
Su −

(
u

ρ

)
Se (26)

SE →
(

1

ρ

)
SE (27)

which can be substituted into Eq. (24), while settingα=−SE andSu= 0 to get the relation

Sρ = −
(

p

ρ2

)
Se (28)

for entropy. Since we only care about constant entropy, we write

dS=
(
∂S

∂ρ

)
e

dρ +
(
∂S

∂e

)
ρ

de= 0 (29)

which can be rearranged to get

de

dρ
= Sρ

Se
(30)

and, using Eq. (28), we have

de

dρ
= p

ρ2
(31)

as an equation that guarantees constant entropy.
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As an example, consider a somewhat general equation of state

p = f (ρ)+ g(ρ)e, (32)

where f (ρ) andg(ρ) are arbitrary functions ofρ. Then using Eq. (31) to impose constant
entropy, we have

de

dρ
−
(

g(ρ)

ρ2

)
e= f (ρ)

ρ2
(33)

which is a first-order linear differential equation, solved with the integrating factor

µ = exp

(
−
∫

g(ρ)

ρ2
dρ

)
, (34)

yielding the solution

e= 1

µ

[ ∫
µ f (ρ)

ρ2
dρ + C(S)

]
, (35)

whereC(S) is a constant function ofS. For an ideal gas,p= (γ − 1)ρewith f (ρ)= 0 and
g(ρ)= (γ −1)ρ giving e=C(S)ργ−1 from Eq. (35). We solve forC(S) using the equation
of state to get

C(S) = p

(γ − 1)ργ
, (36)

or equivalently,

Ĉ(S) = p

ργ
, (37)

leading to

ρ = ρ̂
(

po

p̂

)1/γ

(38)

as a closed form solution (which is very similar to Eq. (16)).

4.1. Example: Tait Solid

Consider the Tait equation of state for a solid given by

p = (γ − 1)cvρT − ρaσ

γ
, (39)

whereγ , cv, ρa, andσ are the Tait parameter, specific heat at constant volume, initial
ambient density, and the nonideal solid parameter, respectively [8]. We integrate Eq. (4),
setting the integration constant toq which is the chemical energy stored in the solid,

e= ρaσ

γρ
+ cvT + q. (40)
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SinceT ′(ρ)<0, limρ→0 T(ρ)=∞, limρ→∞ T(ρ)= 0 andT ′′(ρ)>0, there is a unique
solution for theT ′(ρ) constant isobaric fix. We evaluate Eq. (22) to get

T ′(ρ) = −T

ρ
(41)

which leads to the condition

−T

ρ
= − T̂

ρ̂
(42)

that can be rewritten using the equation of state as

ρ = ρ̂
√

po + ρaσ/γ

p̂+ ρaσ/γ
, (43)

or equivalently,

T = T̂

√
po + ρaσ/γ

p̂+ ρaσ/γ
, (44)

giving an exact closed-form solution.
Sincee′(ρ)<0, limρ→0 e(ρ)=∞, limρ→∞ e(ρ)=q, ande′′(ρ)>0, there is a unique

solution for thee′(ρ) constant isobaric fix. Note that the horizontal asymptotee=q is
sufficient for our purposes. We evaluate Eq. (23) to get

e′(ρ) = − (e− q)

ρ
(45)

which leads to the condition

− (e− q)

ρ
= − (ê− q)

ρ̂
(46)

that can be rewritten using the equation of state as

ρ = ρ̂
√

po + ρaσ

p̂+ ρaσ
, (47)

or equivalently,

e− q = (ê− q)

√
po + ρaσ

p̂+ ρaσ
, (48)

giving an exact closed form solution different from Eqs. (43) and (44).
For constant entropy, we combine Eqs. (39) and (40) to get

p = (γ − 1)ρ(e− q)− ρaσ (49)
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with f (ρ)=−(γ − 1)ρq− ρaσ andg(ρ)= (γ − 1)ρ, implying that the integrating factor
in Eq. (34) isµ= ρ1−γ and the solution in Eq. (35) is

C(S) = p+ ρaσ/γ

(γ − 1)ργ
, (50)

after suitable application of the equation of state. We prefer the equivalent

Ĉ(S) = p+ ρaσ/γ

ργ
(51)

as a more conventional definition. Note that this leads to

ρ = ρ̂
(

po + ρaσ/γ

p̂+ ρaσ/γ

)1/γ

(52)

as a closed-form solution which is more similar to Eq. (43) than to Eq. (47).

4.2. Example: Virial Gas

Consider the virial equation of state for a gas with the third and higher virial coefficients
set to zero,

p = ρRT(1+ bρ), (53)

whereb is the second virial coefficient [1]. We integrate Eq. (4), setting the integration
constant to zero, getting

e= cvT (54)

as our internal energy per unit mass.
SinceT ′(ρ)<0, limρ→0 T(ρ)=∞, limρ→∞ T(ρ)= 0, andT ′′(ρ)>0, there is a unique

solution for theT ′(ρ) constant isobaric fix. We evaluate Eq. (22) to get

T ′(ρ) = −T(1+ 2bρ)

ρ(1+ bρ)
(55)

which leads to the condition

−T(1+ 2bρ)

ρ(1+ bρ)
= − T̂(1+ 2bρ̂)

ρ̂(1+ bρ̂)
= K , (56)

whereK is a constant equal toT ′(ρ), evaluated at(ρ̂, T̂) on the isobarp= p̂. We use the
equation of state to rewrite this as

f (T) = T4+
(

4bpo

R

)
T3−

(
poK

R

)2

= 0 (57)

and use Newton Raphson iteration [2] of the form

Tn+1 = Tn − f (Tn)

f ′(Tn)
, (58)
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where

f ′(T) = 4T3+
(

12bpo

R

)
T2 > 0 (59)

with the initial guess equal to either the reference temperature,T̂ , the temperature provided
by the numerical scheme,To, or any other convenient guess. We could have approached
this rootfinding through the density, but we have found that temperature iteration is easy to
monitor and control [6].

Sincee′(ρ)<0, limρ→0 e(ρ)=∞, limρ→∞ e(ρ)= 0, ande′′(ρ)>0, there is a unique
solution for thee′(ρ) constant isobaric fix. We evaluate Eq. (23) to get

e′(ρ) = −e(1+ 2bρ)

ρ(1+ bρ)
(60)

which leads to the condition

−e(1+ 2bρ)

ρ(1+ bρ)
= − ê(1+ 2bρ̂)

ρ(1+ bρ̂)
(61)

which can be rewritten to be identical to Eq. (56).
For constant entropy, we combine Eqs. (53) and (54) to get

p =
(

R

cv

)
ρe(1+ bρ) (62)

with f (ρ)= 0 and

g(ρ) =
(

R

cv

)
ρ(1+ bρ), (63)

implying that the integrating factor in Eq. (34) is

µ = 1

ρR/cv exp(bRρ/cv)
(64)

and the solution in Eq. (35) is

C(S) = p

/(
R

cv

)
(1+ bρ)ρR/cv+1 exp

(
bRρ

cv

)
(65)

after suitable application of the equation of state. Once again we prefer

Ĉ(S) = p

/
(1+ bρ)ρR/cv+1 exp

(
bRρ

cv

)
(66)

as a more conventional definition. Note that settingR/cv = γ − 1 andb= 0 reduces this to
the ideal gas case, as it should.
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4.3. Which Isobaric Fix?

In general, our preference is to use the isobaric fix that works the best, out of those that
we find convenient to apply.

The constant entropy isobaric fix is difficult to write down in closed form for many
general equations of state, and once written down, not always easy to apply (e.g., consider
the constant entropy isobaric fix for the virial gas above). In the case where the constant
entropy isobaric fix is hard to derive and apply, we choose to consider eitherT ′(ρ) constant,
or e′(ρ) constant, or both, but we ignore the constant entropy isobaric fix.

Sometimes, for equations of state of the formp= p(ρ, T), with the entire problem
formulated in terms ofT , it may be difficult or just inconvenient to find relations withe.
In these cases, we use theT ′(ρ) constant isobaric fix and ignore thee′(ρ) constant isobaric
fix. Likewise, equations of state of the formp= p(ρ, e)with the entire problem formulated
in terms ofe, may not have readily available formulas based onT , so we only apply the
e′(ρ) constant isobaric fix, ignoring theT ′(ρ) constant isobaric fix.

For some equations of state, all analytic methods may be difficult or impossible to apply,
e.g. consider an equation of state in tabular form. In these cases we advocate the use of the
constant entropy isobaric fix, since a purely numerical approach is available. That is, given
p̂ andρ̂ at a suitable reference state along withpo at the point in question, one can integrate
an ordinary differential equation to find an appropriate density. At constant entropy,

dp

dρ
= c2, (67)

wherec is the local speed of sound, dependent on the local density and pressure (and partial
derivatives of the pressure). We apply the constant entropy isobaric fix by integrating the
ordinary differential equation

dρ

dp
= 1

c2
(68)

from p̂ to po with initial dataρ= ρ̂. The final value ofρ at p= po is the value we use for
the isobaric fix. Note that exact integration of this ordinary differential equation gives the
same density as analytically applying the constant entropy isobaric fix. Our experience has
shown that this numerical approach is fairly robust and easy to apply.

5. A MOVING PISTON

One way of simulating moving pistons is to transform the Euler equations to an accelerat-
ing reference frame which would keep the piston surface fixed in space and allow the use of
exact ghost cells for a solid wall boundary condition. This transformation adds source terms
to the right-hand side of the momentum and energy equations which can be integrated in
time, along with the spatial derivative terms. The details are outlined in [8]. A drawback of
this method is that it cannot conveniently treat multiple bodies with different accelerations
at the same time. Since we wish to couple our Eulerian code to multiple moving objects
and possibly to Lagrangian codes, we prefer to use the standard (nontransformed) Euler
equations and treat the piston as a moving body with the appropriate boundary conditions.
For a general discussion on boundary conditions, see Chap. 19 in [9].
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5.1. Ghost Cells

We will allow a piston to move across the domain from left to right, with a specific
velocity. This will be accomplished by tracking the piston location (using a level set in 2D)
and then using ghost cells to define the interior of the piston. For a piston moving with
speedvp and exterior values ofρ, u, e, andE, we define the interior reflected values as

ρp= ρ, ep= e (69)

up= 2vp − u, Ep= ρe+ ρ(2vp − u)2

2
. (70)

For example, we consider a 20 cm domain consisting of 200 grid cells, where the piston
starts at rest at the left edge of the domain and moves with velocityvp(t). We compute this
problem by setting the left-hand boundary to−0.5 cm, instead of 0 cm, thus putting five
ghost cells in our piston and increasing the total number of cells to 205.

5.2. Numerical Interpolation

Assume that a piston starts atx= 0 and that we have addedy units of ghost cells to the
left of x= 0. Consider the piston sitting at a pointx0 in space with a velocityvp. Then the
grid cells which lie inside the piston are numbered from 1 toi0, where

i0 =
[

y+ x0

dx

]
+ 1, (71)

where [A] is the greatest integer less than or equal toA.
For each of the grid pointsi , from 1 to i0, we identify the associated set of conserved

variables located outside the piston. A grid pointi is located atx= (i − 1) dx− y and so
it is a distancex0− (i − 1) dx+ y inside the piston surface, implying that the associated
reflected point is at the location

x̂ = x0+ x0− (i − 1) dx+ y (72)

which has neighbors which are the grid nodes

j =
[

x̂ + y

dx

]
+ 1 (73)

and j + 1. The point is located

ε = x̂ + y− ( j − 1) dx (74)

units to the right ofj anddx− ε units to the left ofj + 1.
We will use a second-order linear interpolation to find the values of the conserved vari-

ables,U in between the grid nodes. This is a second-order boundary condition and should
be good enough for third-order methods in the interior. If bothj and j + 1 are exterior
points, then the interpolated value for the conserved variables is

U = U j + ε
(

U j+1− U j

dx

)
; (75)
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otherwise, if j is a point which is inside the piston, i.e.j ≤ i0, then

U = U j+1+ (dx− ε)
(

U j+1− U j+2

dx

)
, (76)

using linear extrapolation fromU j+1 andU j+2. Once the exact values ofU are known, then
the new interior values are defined above, based on the piston velocity,vp.

6. EXAMPLES

For the ideal gas we consider air with M= 0.029 kg/mol andγ = 1.4. For the Tait solid
equation of state, we haveγ = 5,cv = 1500 J/kg K,ρa= 1900 kg/m3, σ = 8,980,000 m2/s2,
andq= 0. For the virial gas equation of state, we haveR= 286.7 J/kg K,cv = 716.8 J/kg K,
andb= 0.00076 m3/kg.

The grid is set up to be a 1-m domain with 200 cells. The piston (or wall if not moving)
is located at the left-hand side of the figure in all cases and ghost cells are added to the left
of the piston. We do not print out the values of data at ghost cells, since they can be inferred
from the real data points.

All schemes use third-order TVD Runge–Kutta for the time stepping [16], and in each
case the CFL is chosen near its limit.

As specified earlier, the isobaric fix is applied as a boundary condition after each Euler
substep of the TVD Runge–Kutta method. That is, we update the conserved variables in
the usual fashion for one substep, and then we use the isobaric fix to modify the computed
values of the conserved variables near the wall. For example, suppose that the values of
density, velocity, and pressure areρ1, u1, andp1 adjacent to the wall andρ2, u2, andp2 at
the next point over which we will use as a reference point. Then in the case of an ideal gas,
we can use Eq. (16) to define

ρnew= ρ2

√
p1/p2 (77)

as the new density adjacent to the wall. Thenρnew, u1, andp1 can be reassembled to get the
new conserved variables.

6.1. Example 1

The purpose of this example is to illustrate how the isobaric fix works for a standard
shock reflection problem. We generate a shock using a standard shock tube problem.
The generated shock moves to the left until it intersects the solid wall (located at 0 m)
and reflects off, causing “overheating.” Note that we numerically cut off (and discard)
the contact discontinuity and rarefaction so that they do not interfere with our reflected
shock.

We use the ideal gas equation of state where the initial date for the shock tube problem
hasu= 0 andT = 300 K. In addition, we choose the density to be 10 kg/m3 on the left and
100 kg/m3 on the right.

We use third-order ENO-RF [16] which is a low viscosity scheme and show the results
in Fig. 5. Note the “overheating” errors in the temperature and the density. Figures 6 and
7 show the positive effect that the isobaric fix can have on these “overheating” errors. As
shown in Fig. 8, the Marquina-style Jacobian evaluation [3, 4] will also reduce overheating



       

562 FEDKIW, MARQUINA, AND MERRIMAN

FIG. 5. Ideal gas, ENO-RF, “overheating.”

with its built-in heat conduction mechanism (note that ENO-LLF-M stands for ENO-LLF
with the Marquina-style Jacobian evaluation.) In Figs. 9 and 10, we show how the isobaric
fix works in conjunction with the Marquina-style Jacobian evaluation. Note that the isobaric
fix did not affect the shock speed or strength. In fact the intermediate points inside the shock
are almost in the same location.

FIG. 6. Ideal gas, ENO-RF,T ′(ρ) constant.
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FIG. 7. Ideal gas, ENO-RF, constant entropy.

At this point, we comment on conservation. A stationary solid wall boundary has a
physical flux given by  ρu

ρu2+ p

(E + p)u

 =
 0

p

0

, (78)

FIG. 8. Ideal gas, ENO-LLF-M.
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FIG. 9. Ideal gas, ENO-LLF-M,T ′(ρ) constant.

since the velocity is identically zero. Thus, mass and energy are completely conserved while
momentum is not conserved. The change in momentum for the computational domain can
be found by summing the momentum fluxes at the boundaries. Achieving exact conservation
for mass and energy can easily be accomplished for stationary walls aligned with the grid by

FIG. 10. Ideal gas, ENO-LLF-M, constant entropy.
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setting the appropriate fluxes to zero. However, this can be excessively complicated to apply
for multiple moving boundaries with irregular shapes. In either case, the isobaric fix will
create a small conservation error in mass and energy in favor of a better solution. However,
in the later case, difficulties of scheme implementation may force relaxation of mass and
energy conservation, even without the isobaric fix. In this case, the small conservation error
generated by the isobaric fix is not an issue. Note that all the shocks in our examples are
located in the correct cell and move with the appropriate speed, even with the relaxation of
exact conservation at the boundary.

6.2. Example 2

In this example we start the fluid at rest,u= 0, and atT = 300 K. Then the piston (initially
located at 0 m) is instantaneously set to a velocity of 1000 m/s driving to the right. There is
no time for the fluid to react to a smoothly accelerated piston. Our acceleration is infinite!

Our first test is with the ideal gas equation of state where we choose the uniform initial
density to be 10 kg/m3. The results are shown in Fig. 11 for ENO-RF. The results forT ′(ρ)
constant isobaric fix (equivalent toe′(ρ) constant isobaric fix) are shown in Fig. 12, while
the results for the constant entropy isobaric fix are shown in Fig. 13.

Next we try the Marquina-style Jacobian evaluation and note that it suffers from “under-
heating” as shown in Fig. 14 for ENO-LLF-M. In Fig. 15, we combine ENO-LLF-M with
the T ′(ρ) constant isobaric fix and note that the isobaric fix improves the “underheating”
problem.

For the Tait solid equation of state, we choose the uniform initial density to be 1900 kg/m3.
The results in Fig. 16 show the “overheating” errors for the ENO-LLF scheme. Figures 17,
18, and 19 show the improvement gained by using any of the three isobaric fixes.

FIG. 11. Ideal gas, ENO-RF, “overheating.”
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FIG. 12. Ideal gas, ENO-RF,T ′(ρ) constant.

FIG. 13. Ideal gas, ENO-RF, constant entropy.



       

ISOBARIC FIX FOR THE OVERHEATING PROBLEM 567

FIG. 14. Ideal gas, ENO-LLF-M, “underheating.”

FIG. 15. Ideal gas, ENO-LLF-M,T ′(ρ) constant.
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FIG. 16. Tait solid, ENO-LLF, “overheating.”

FIG. 17. Tait solid, ENO-LLF,T ′(ρ) constant.



       

ISOBARIC FIX FOR THE OVERHEATING PROBLEM 569

FIG. 18. Tait solid, ENO-LLF,e′(ρ) constant.

FIG. 19. Tait solid, ENO-LLF, constant entropy.
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FIG. 20. Virial gas, ENO-RF, “overheating.”

For the virial gas equation of state, we choose the uniform initial density to be 10 kg/m3.
The results in Fig. 20 show the “overheating” errors for the ENO-RF scheme, while Fig. 21
shows the results with theT ′(ρ) constant isobaric fix (which is equivalent to thee′(ρ)
constant isobaric fix for the virial gas equation of state).

FIG. 21. Virial gas, ENO-RF,T ′(ρ) constant.
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FIG. 22. Ideal gas, ENO-RF, “overheating.”

In general, the isobaric fix does not completely eliminate the “overheating” errors, but it
does limit them to more acceptable levels. In contrast, unfixed schemes can accumulate large
errors in density and temperature. In fact, our experiments have shown that some schemes
will eventually fail due to nonphysical negative values of either density or temperature.

6.3. Example 3

In this example we start the fluid at rest,u= 0, and atT = 300 K. Then the piston (initially
located at 0.3 m) is instantaneously set to a velocity of−100 m/s. That is, we instantaneously
pull the piston to the left (away from the fluid).

We use the ideal gas equation of state with a uniform initial density of 10 kg/m3. The
results in Fig. 22 show the “overheating” errors for the ENO-RF scheme, while Fig. 23
shows the results with theT ′(ρ) constant isobaric fix (which is equivalent to thee′(ρ)
constant isobaric fix). Figure 24 shows the results with the constant entropy isobaric fix.

6.4. Example 4

In this example, we consider test cases from [14]. Consider a 1-m domain with a stationary
solid wall boundary located at 0 m. We use 100 grid points withγ = 5

3 and M= 0.029 kg/mol
in the ideal gas equation of state. Initially,ρ= 1,u= −1, andp= 0 are defined everywhere
on the domain. Note that the wall is placed at a flux, not at a grid point.

Since the sound speed is initiallyc= 0, we use the second-order central scheme from
[11]. Figure 25 shows the “overheating” errors, and Fig. 26 shows the improvement with
theT ′(ρ) constant isobaric fix.

7. A TWO-DIMENSIONAL TEST

In this section we consider the two-dimensional Mach-3 step flow test problem [17],
where the reflecting boundary conditions are crucial in determining the quality of the
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FIG. 23. Ideal gas, ENO-RF,T ′(ρ) constant.

numerical approximation. The tunnel is 3 units long and 1 unit wide with a 0.2 unit high
step which is located 0.6 units from the left-hand side of the tunnel. We use a gamma law
gas withγ = 1.4. The initial conditions areρ= 1.4, p= 1, u= 3, andv= 0. An inflow
boundary condition is applied at the left end of the computational domain and an outflow
boundary condition is applied at the right end. We apply reflecting boundary conditions
along the walls of the tunnel.

FIG. 24. Ideal gas, ENO-RF, constant entropy.
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FIG. 25. Planar Noh problem, “overheating.”

The density profile is the hardest to compute due to the Mach stem at the upper wall and
the contact discontinuity it generates and due to the corner of the step which is a singularity
of the boundary of the domain and the center of a rarefaction fan, i.e. a singular point of
the flow. In an attempt to minimize numerical errors generated at the corner of the step,
Woodward and Colella propose an additional boundary condition [17] near the corner of

FIG. 26. Planar Noh problem,T ′(ρ) constant.
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FIG. 27. Contour plots of numerical approximations to the density: PHM-RF (top); PHM-RF with constant
T ′(ρ) isobaric fix (middle); PHM-LLF (bottom).

the step in order to maintain steady flow around this singular point. They propose two
corrections: constant entropy and constant enthalpy to a group of six cells near the corner
of the step using an upstream point as a reference. The details of these two corrections are
outlined in [3] (in Eq. (24) of [3], the second appearance ofρb should bePb).

The overheating phenomenon can be observed along all reflecting boundaries of the
domain by looking at the level curves near the walls. More orthogonal level curves impinging
on the reflecting walls imply less “overheating” errors. We note that theT ′(ρ) constant
isobaric fix dramatically reduces “overheating” errors, and a direct consequence of this
is an additional reduction in other errors such as the “kinked” Mach stem and numerical
artifacts related to the “carbuncle phenomenon” (associated with nearly stationary shocks
near a reflecting wall). We note that Marquina’s flux splitting eliminated these numerical
pathologies in [3].

The numerical results shown are on an equally spaced grid withdx= dy= 1
40 and finer

grids showed similar results. We run the code to a final time oft = 4 when the flow has a
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FIG. 28. Adiabatic exponents for the previous figure (one-dimensionaly-sections aty= 0.2).

rich and interesting structure which is the “culture medium” for growing numerical errors
associated with near stationary shock waves aligned with the grid, and their interaction with
reflecting walls producing large “overheating” errors. In order to be concise we ran all the
experiments for the third-order PHM reconstruction [12]. Each contour plot in this section
displays 30 equally spaced level curves between the minimum and maximum values of the
computed density.

In this first example, we use the standard Jacobian technique, as opposed to Marquina’s
flux splitting. In addition we use the standard six cell enthalpy and entropy correction.
In the top plot of Fig. 27 we display numerical approximations of the flow density for
PHM-RF (the “RF” notation is described in [16]) where the “kinked” Mach stem is con-
spicuous. The middle plot was obtained with the same algorithm with theT ′(ρ) constant
isobaric fix correction applied along the solid walls using the third cell from the wall to
correct the second cell from the wall and then that cell to correct the cell adjacent to the
wall (we find this double correction satisfactory for high-order resolution). The bottom
plot represents the numerical approximation obtained with the more viscous PHM-LLF
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FIG. 29. Contour plots of numerical approximations to the density with PHM-RF-M: standard corner treatment
(top); standard corner treatment withT ′(ρ)constant isobaric fix (middle); no entropy correction withT ′(ρ)constant
isobaric fix (bottom).

(the LLF notation is described in [16]). While both the isobaric fix and the more viscous
PHM-LLF method removed the “kinked” Mach stem pathology, the isobaric fix has the
advantage of a much sharper contact discontinuity. In Fig. 28 we display the corresponding
y= 0.2 section of the adiabatic exponent to see how entropy is preserved at the corner of the
step.

In this example we use PHM-RF-M (where the “M” denotes the application of Marquina’s
flux splitting technique, as opposed to the standard Jacobian evaluation). In the top plot of
Fig. 27, we used the standard corner treatment. The middle plot uses the standard corner
treatment with theT ′(ρ) constant isobaric fix along reflecting walls. The bottom plot was
obtained by applying the isobaric fix with constantT ′(ρ) along reflecting walls and only
an enthalpy correction at the corner, i.e. no entropy correction at the corner. Note that the
bottom numerical approximation gives an accurate prediction of the shock wave location
without the entropy fix! This is the only method we know of that can predict the shock
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FIG. 30. Adiabatic exponents for the previous figure (one-dimensionaly-sections aty= 0.2).

wave location without the entropy fix. In Fig. 30 we observe the entropy preservation at the
corner for the corresponding numerical approximations that appear in Fig. 29.
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